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I, IWTHODUCTION 

A. Statement of Problem 

This thesis is a theoretical and experimental study of a bulk wave 

piezoelectric transducer scheme where the transducer regions are defined 

by strip lines on the piezoelectric crystal. It is intended that they be 

applied in the microwave frequency range and that the length of the 

transducer region is to be long with respect to an electrical wavelength. 

In particular the concept being considered here envisions a piezo­

electric plate of the appropriate symmetry. A ground plane is metalized 

on one side and strip lines are metalized on the other. Technically 

these lines would be unshielded microstrip but the dielectric constant 

of useful piezoelectric materials is so high that it is legitimate to 

consider them as strip lines. Connection to the outside world will be 

done in the standard manner via coax to strip line connections. There 

is obvious flexibility in this scheme and it will be compared to other 

bulk and surface wave transducers later. It is also a planar scheme with 

the same production potential as surface wave devices. It is found that 

certain terminations of the strip line imply a transducer that is not 

mechanically resonant but still possessing attractive insertion losses. 

Such a property should facilitate mechanical preparation and also the 

ability to match the transducer to external circuits. It is also found 

that certain configurations of these non-mechanically resonant trans­

ducers can be located at will on the piezoelectric substrate. 
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B. Motivation 

In the thirteen years since Baranskii (1) and Bonunel and Dransfeld 

(2) reported generation and propagation of acoustic waves in quartz at 

microwave frequencies, the area of microwave acoustics has grown to the 

point that special issues of journals (3t are devoted to the topic. 

The engineering interest in this field lies primarily in obtaining 

long time delays in small packages and in various filtering and signal 

processing schemes. The transducer is obviously a vital component of 

any microwave acoustic system. 

C. Quasi-Static Approximation 

Customarily, in analyzing bulk wave transducers, the transducer 

region is short with respect to an electrical wavelength and an electri­

cal quasi-static approximation can be made (5» 6), That is, it is usual 

to set^YE In analyzing the proposed transducers, this approxi­

mation cannot be made as it is necessary to include to 

account for the relative length of the transducer region. 

%rame (7. 8) was the first to consider uniform plane wave propaga­

tion in a piezoelectric media without making the quasi-static approxi­

mation. In a very general way, Kyame considers all the relevant physics 

of an electromagnetic and acoustic wave traveling through an infinite 

piezoelectric media. The essential feature of his work is to show that 

theoretically there are components of the acoustic wave traveling near 

the electromagnetic velocity and components of the electromagnetic waves 

traveling near the acoustic velocity, Hutson and White (9) later pointed 
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out that these waves are negligibly small and that in the typical cal­

culation the quasi-static calculation can always be made. 

D. Scope of the Thesis 

The general plan of a strip line transducer is to me tali ze a ground 

plane on one side of a piezoelectric substrate and strip lines on the 

other, as indicated in Figure 1. The z axis is intended as the direction 

of propagation and it will be necessary for the piezoelectric substrate 

to have the correct symmetry and orientation with respect to the x, y, z 

coordinate system. For the structures of interest, it will be vital that 

1 be the order of an electrical wavelength, and it is noted that the 

quasi-static approximation cannot be used in analyzing such a structure. 

The class of non-mechanically resonant transducers (which will be 

termed electrically resonant transducers) will have different termina­

tions than those indicated in Figure 1; the intention here is to indicate 

what kind of analysis is needed. 

If losses in a piezoelectric transducer can be neglected, then all 

of the power of one form that can be injected into the transducer is 

converted to power of the other form. Therefore a piezoelectric trans­

ducer is properly characterized by its driving point admittances as these 

will indicate how well it can be matched to the external circuits. 

In Chapter II, uniform plane wave (u.p.w.) propagation in a crystal 

of Amm (10) symmetry is considered without using the quasi-static approxi­

mation, In particular propagation along the c axis and in the basal plane 

is considered. This constitutes a special direction and symmetry unlike 
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Kyame's work (7» 8) that considers a general propagation direction and 

symmetry. It is found that the waves that result from axis propagation 

that are appropriate for use in the kind of structure indicated in Figure 

1 can be put in a particularly simple one-dimensional model. This one-

dimensional model is given a judicious normalization that facilitates 

later approximation procedures and brings out the analogy to the capaci-

tively coupled transmission line. The static energetics and the signifi­

cance of Mason's ̂  for these waves is reviewed (11). As is well known 

(11), , which is a property of the piezoelectric material, is a 

measure of goodness of the static energy conversion mechanism. The 

dynamic power theorem of these waves is reviewed and it is pointed out 

that the coupling between the acoustic and electromagnetic modes is pas­

sive in nature (12). The equations for capacitively coupled transmission 

lines are indicated and it is seen that the analogy to the non-quasi-

static strip line waves is exact. If the coupling, as measured by the 

piezoelectric constants, goes to zero, one line corresponds to a simple 

mechanical wave and the other corresponds to a transverse electromagnetic 

wave. The energy conversion arises through the piezoelectric constants, 

which are analogous to the coupling capacitors, and the passive transfer 

(12) or swapping of energy between the two lines that results. If the 

quasi-static approximation is appropriate, the electrical line is reduced 

to a capacitor which is capacitively coupled to the acoustic line. The 

author believes this analogy is original and gives insight to the process 

of energy conversion in a piezoelectric media. 

An exact solution of the strip line waves for the dispersion relation 
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and wave amplitudes is readily accomplished. As Kyame (7) pointed out, 

there exist stress and velocity waves traveling near the electromagnetic 

velocity and electric and magnetic waves traveling near the acoustic 

velocity. The exact results for the wave amplitudes are not directly 

interpretable but are made so by an approximation technique that expands 

all relevant quantities in a power series expansion of S where S is 

the ratio of the uncoupled acoustic phase velocity to the uncoupled 

electromagnetic phase velocity and n = 1,2 ... . This approach is used 

because it is recognized that even though the static coupling between the 

two modes could be very strong, the interaction is so highly asynchronous 

that the dynamic interaction will be very weak and more sensitive to the 

asynchronism than the coupling. This approximation technique is facili­

tated by the normalization mentioned earlier. Because S is so small 

(typically 10~^) only the first terms in each expansion need be kept. 

The results of this approximation relate the wave amplitudes in a meaning­

ful way. It is found that the electric wave has significant wave ampli­

tudes only at the electric velocity and the velocity wave at the acoustic 

velocity. The magnetic wave has significant wave amplitudes at the 

electric velocity and is significantly coupled to the velocity wave and 

hence has significant wave amplitudes moving at the acoustic velocity, 

likewise the stress wave has significant wave amplitudes at the acoustic 

velocity, but is significantly coupled to the electric wave and hence has 

significant wave amplitudes moving at the electric velocity. These results 

are clarified by comparing them to a quasi-static solution of the waves. 

In the quasi-static approximation, the electric field is a constant and 
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the magnetic field is the integral of the electric field plus the 

velocity field timesjxCT' • The velocity field is just a forward and 

backward mechanical wave and the stress field is a forward and backward 

mechanical wave plus the constant electric field times • If one 

were trying to modify the quasi-static fields to represent the non-quasi-

static case, a good guess would be to let the electric field have a for­

ward and backward component at the electric velocity and substitute this 

into the above quasi-static fields. Such a procedure is justified by the 

Ç expansion approach which gives the same results. The author believes 

the S expansion approach is original in terms of analyzing highly asyn­

chronous problems and that it generates a productive solution for non-

quasi-static wave interactions in a piezoelectric. 

The non-quasi-static waves are applied to a semi-infinite piezo­

electric media where power is injected into the electromagnetic mode at 

z = 0, A fraction of the injected power is periodically swapped between 

the electromagnetic and acoustic modes and it is shown that this fraction 

is I^ , The energy conversion mechanism consists of this peri­

odic swapping of energy and the bigger (the static measure of energy 

conversion) and the bigger S then the more energy that is swapped between 

the modes. It is seen that the dynamic measure of goodness of energy 

conversion should be considered to be % . 

It is pointed out that if \ g'^wî^d where \ ̂ is the electrical 

wavelength and is the acoustic wavelength, then the non-quasi-static 

uniform plane wave solutions described above can be fitted to the strip 

line structure indicated in Figure 1, The c axis of the piezoelectric 
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substrate must be oriented either along the z axis or the x axis. The 

particular structures of interest (here termed electrically resonant 

transducers) have the electric field shorted at one or both ends of the 

strip line. They can be driven electrically in a variety of ways and 

the practical case of the transducer mechanically terminated in the sub­

strate is considered. The non-quasi-static uniform plane wave solutions 

described above are applied to this structure. It is found that the 

boundary condition of a shorted electric field at either end essentially 

decouples the acoustic and electric transmission lines except for a 

transformer at the point of electrical excitation. The circuit model so 

developed can be manipulated to indicate a number of strip line trans­

ducers with remarkable properties. 

It is found that these shorted strip line transducers when termin­

ated mechanically in the substrate should have no mechanical resonance 

at all. Essentially this phenomenon arises because the electric field is 

zero at the point the acoustic wave is launched into the substrate and 

hence no reflections arise from that point. The way to appreciate this 

phenomenon is to realize that in a quasi-static transducer there are 

always (irrespective of the mechanical terminations) mechanical waves 

moving in both directions in the transducer region. Even if one or both 

ends of the quasi-static transducer are terminated in an acoustic match, 

there will still be reflections that can be thought of as arising from the 

non-zero electric field at the edge of the transducer. The long strip 

line construction permits one to short the electric field and if the 

transducer is terminated in an acoustic match, there are no reflections. 
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The admittance calculations of this kind of transducer imply attractive 

insertion losses in relation to 5 0 SL exciting circuits and practical 

dimensions of the strip line; in fact the larger, the less the in­

sertion loss. The fact of no mechanical resonance in these structures 

should greatly facilitate mechanical preparation and external matching. 

The author knows of no piezoelectric transducer that is not mechanically 

resonant. 

A great drawback to conventional bulk wave microwave frequency trans­

ducers is that they must be located on the end of the substrate that the 

acoustic signal is being stored or manipulated in. In Chapter II it is 

pointed out that certain configurations of these electrically resonant 

transducers can be located at will on the substrate. This is a very 

important property and in strong contrast with quasi-static transducers. 

In addition it is noted that the electrically resonant transducer at 

its electrical resonance presents a real admittance at the point of ex­

citation, This should further facilitate external matching. 

In Chapter III the construction and operation of an end excited 

electrically resonant transducer is described. The transducer was ex­

cited by voltage pulses varying in duration from 2ns to 10ns. An acous­

tical return could be observed for up to 30 ̂s. It is felt that the 

details of this acoustical return could be consistently interpreted iii 

terms of the models generated in Chapter II. In Appendix A the dual of 

the electrically resonant transducer is worked out and this structure 

has no apparent practical use. Its analysis is included for the sake of 

completeness. In Appendix B, the strip line transducer is analyzed as if 
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It were very short with respect to an electrical wavelength and the quasi-

static approximation could be employed. This is done just so the results 

can be compared with the electrically resonant transducer. 

E. Comparison to Other Mcrowave Frequency Transducers 

There have been a number of microwave frequency bulk wave transducers 

invented and perfected. These include quartz bars in insertion cavities 

•with surface excitation of phonons (2), thin quartz bars bonded to the 

substrate (13), thin magnetic film schemes (14), depletion and diffusion 

layer transducers (15)» and thin piezoelectric film transducers (16), All 

of these transducers share the property that their location is restricted 

to the ends of the substrate. 

The thin piezoelectric film transducer has been the most successful 

bulk wave transducer in the sense of gain bandwidth products. These 

transducers are made by depositing a thin (say one half of an acoustic 

wavelength for the frequency of interest) film of piezoelectric material 

on one end of the substrate. The material is usually cadmium sulfide or 

zinc sulfide. These transducers realize insertion losses comparable to 

classic transducers built for low frequency (less than 10 MHz) applica­

tions (17). They probably constitute the ultimate quasi-static transducer. 

The strip line electrically resonant transducer would seem to }:ave 

a number of advantages over the thin piezoelectric film transducer. 

Certain configurations of the electrically resonant transducer can be 

located at will on the substrate. This is an obvious important advantage. 

The question of gain bandwidth products is difficult to assess because to 
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compare these transducers practically depends upon the function they are 

to play, technological achievements in ferroelectric crystals (how long 

and thin they can be made) which are necessary for the electrically 

resonant transducers, and how well the &.R.T. s reactance could be 

matched by external circuits. The author thinks that the low insertion 

losses of the thin piezoelectric film transducers will not be equaled by 

the strip line transducers but the gain bandwidth product will prove to be 

much larger. The electrically resonant transducer is only practically 

applied when the piezoelectric transducer region and the substrate are 

the same. Whether this is an advantage or not depends upon the applica­

tion and technological achievements in making large ferroelectric crys­

tals. It would appear that, since the electrically resonant transducer 

has no mechanical resonance, dimensional tolerances in its fabrication 

will be considerably relaxed and hence high frequency transducers (given 

the proper piezoelectric substrate) will be readily fabricated. That is, 

it would appear that they would be considerably easier to fabricate than 

the thin film transducer. In addition their fabrication is planar in 

nature. 

As a technology, surface wave transducers (18) and devices (19, 20) 

is probably the direction microwave acoustics applications will follow. 

Surface wave technology has all the attributes of low insertion loss 

transducers, flexibility in location of transducers, flexibility in con­

struction of devices, flexibility in the utilization of phonon amplifi­

cation, and a planar method of construction. The problem facing surface 

wave technology is the photo mask limit in fabricating devices, which 
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limits devices made by photo mask techniques to applications below 

800 MHz. This limit cannot be pushed higher because of the wavelength 

of light. Recently 2.5 GHz transducers have been constructed (21) using 

electron beam fabrication techniques, and it is thought 4.0 GHz operation 

may be possible. The practicality of this kind of construction remains 

to be seen. 

Strip line transducers share the surface wave transducers' advan­

tages of flexibility in location and planar construction. However a bulk 

wave is confined to the substrate and cannot be subjected to the kind of 

manipulation that surface waves can be put to, particularly in utilizing 

phonon amplification. The strip line electrically resonant transducer 

would seem to have two advantages over the interdigital electrode trans­

ducers used to generate surface waves. Because the electrically resonant 

transducer is not mechanically resonant, the author thinks that in the 

long run, the electrically resonant transducer will have more useable 

bandwidth than any transducer invented to date. This could be particu­

larly useful in memory applications. Secondly, if it proves time that 

dimensional tolerances can indeed be relaxed because there is no mechani­

cal resonance, then it may be possible to build and use these transducers 

well above the photo mask limit (800 >iHz) that plagues surface wave trans­

ducers. 
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II. ANALYSIS AND APPLICATION OF UNIFORM PLANE WAVE AXIS 

PROPAGATION IN PIEZOELECTRIC MATERIALS 

A. Formulation of Problem for 4mm Symmetry 

The symmetry selected to work in is a 4inm piezoelectric crystal (10), 

The representation of this symmetry as given by Nye (10) is shown below. 

Tu 4 0 0 0 
! -1 

Sn 

Tzz o 0 o 

T-îs 0 O o 

T.3 Ù 0 o Chh 0 o s 23 

0 0 0 o A 
Chh 0 S,i 

. ̂  Û 0 o c 

(1) 

0
 

0
 Ox 

0 0 \\z\ Oz 

0 0 V\^3 . 

û Ws" 0 

0 0 

_ 0 00 
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E, 0 

E. 0 

.E3 _o 0 |3è 

D, 

LOî  

0 0 Q 0 V>15 o 

0 O O Ki5 0 O 

V \ 3 ,  V ? i  W  O D D .  

S,i 
Siii 

^331 

Sxî 

S,3 

(2)  

Engineering strains are used here, 

Q.. 

= 

^ Ux 

^ 
X 4/ * U 

\ % 

O) 

(4) 

where is the particle displacement» The force expression is given 

below. 
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W W"Î. 

\zi 

_ \%3 h3 

Ui 

W-i 

1 

Ui3 

(5) 

The formulation is completed with Maxwell's equations. 

^ X H = -K\ 

V x H  =  

(6 )  

(7) 

V - 0  =  o  

V'H =2 O 

(8) 

(9) 

In writing these equations, the following assumptions have been 

made. It is assumed that 4mm symmetry applies. The conductivity has 

been assumed to be zero, and it has been assumed there is no free 

charge. It has been assumed that )J^ is a constant scalar. The acous­

tic losses are taken to be negligible. And finally it is implicitly 

assumed that the macroscopic stress-strain relations are valid at the 

frequencies of interest. 

In this representation, the direction is the c axis and the x-^, 
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X2 plane is the basal plane. 

This particular representation with j and being the iiidepondcint 

variables as opposed to letting T^j and being independent is chosen 

because the assumption of uniform plane waves causes three of the strains 

to be zero and one component of the D field to be zero. Considerably 

more algebraic manipulation is required if and are selected as 

the independent variables. 

B. Basal Plane Propagation 

The assumption of uniform plane wave propagation along the axis 

is equivalent to assuming uniform plane wave propagation in any direction 

in the Xg plane or basal plane. Therefore, the assumption 

^ ^ = 0 (10) 

U-L 

is equivalent to assuming arbitrary direction in the basal plane. 

As mentioned earlier, the uniform plane wave assumption implies 

three of the strains are zero. In this case, 

S33 =• S-j^^ — 0 

Also from Equations 8 and 9 it can be concluded that 

=. V\\ = o (12) 
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substitution of liquations 10-lU into aquations 1, Z and ^-7 

generates the equations which describe basal plane propagation. It 

is found that these equations can be divided into four independent 

wave sets which are given below. 

Si = 

^"T\v I ^ ̂  ^ t 

T\\ — Cu Sn — Vix'Os 

1 

5.3 — "WlSw t 

^ ^ 3 —  | A  

9̂. = S>\\ — V\31 D3 

^3^ = cîl Su — \\33 D 

(13) 

(14) 

(15) 

(16; 

(17) 

(18) 

(19) 

(20/ 
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- -VvS 0; 
(21) 

- G. 

S^3 =. O 

(22) 

(23) 

(24) 

(25) 

^S\3 = 

Tn — C44 S\3 

(26) 

(27) 

(28) 

E\ =• A\\s s 13 (29) 
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(32) 

(31) 

(30) 

The Type IVt, r, wave is just a mechanical shear wave with no elec-

trie coupling. The Type Illg p wave is a shear wave with a longitudinal 

E field directly coupled to it. The Type Ilg p wave is a T.E.M. wave 

with a shear stress directly coupled to it. The Type Ig^p^ wave is a 

longitudinal mechanical wave continuously coupled to a T.E.K. wave. The 

Type I wave will prove to be the solution that is applicable to the 

proposed strip line structure of Figure 1. In Section K more will be 

said about fitting this solution to the boundary conditions imposed by 

the structure of Figure 1. In the future attention will be concentrated 

on the Type Ig p wave. 

Uniform plane wave propagation along the c axis is described by 

letting 

B.P. 

C. c Axis Propagation 

VbX) - = o (33) 



www.manaraa.com

20 

This implies 

Su — — Su — 0 (34) 

and 

H 3, = D3 = 0 (35) 

As before, substitution of Equations 33-35 into Equations 1, 2 and 

5-7 generates the equations which describe uniform plane wave propaga­

tion along the c axis. It is found that these equations can be divided 

into three independent wave sets which are given below. 

ic-

S\'3 — 

= CifH \\»sD\ 

E \  =  p ) u  —  V i s S i s  

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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iTiî — C^n Si3 — Vi5^)^ C*^) 

M 
Et — tir ~VisS« 

\^H\/"«X3 = ~^\)-!./U 

A33 = "iUj /-vXs (%) 

/"iX^ = Ç 

\%3 = c^3 s33 (50) 

%X 
'Til. = C\\ S 31 

(T \ \  =  c j |  S  33 

1 t.^ = ~Vv53 ^33 
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The Type wave is a longitudinal mechanical wave with a longi­

tudinal E field directly coupled to the wave by h^^. The Type and 

Ilg waves constitute different polarization of the same wave. The Type 

or 11^ wave is a shear wave that is continuously coupled to a T.E.K. 

wave. The lype wave will prove to be the solution that is applicable 

to the proposed strip line structure of Figure 1. In Section M more will 

be said about fitting this solution to the boundary conditions imposed 

by the structure of Figure 1. In the future, attention will be con­

centrated on the Type wave, 

D. A One-Dimensional Model of the Type I Waves 

A convenient one-dimensional model of the Type I waves is obtained 

by letting z be the propagation direction and letting the x, y plane be 

uniform. It is only necessary to consider one polarization of the 

electromagnetic wave. 

=• -

The force equation is given by 

(56) 
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where u is the particle displacement and T* is the stress that the 

particle exerts on the media. The strain is given by 

S — (57) 

The equations of state are 

T = - ̂  S) (58) 

and 

Ey = — V\S (59) 

The connection between these one-dimensional variables and the Type I 

c or basal plane waves is given in Table 1. 

It is convenient to reformulate this one-dimensional model in terms 

of a velocity field, 

M = ^u/^ic (60) 

Then Equations 5^59 can be put in the form given below. 
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Table 1. Relation of Type I _ and I waves to the one-dimensional 
model B.P. c 

One-dimensional Type ^ wave Type I wave 
Type I wave ' ' 

z = direction of = direction Xo = direction 
propagation of propagation or propagation 

S 

T» 

u 

3=1/C^ 
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e/i_ 

hi "13 

11 -T-
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-D^ 
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l/cii 

i/p:, 

0 

2 S D 
^ =^31/^33 cii 

1 

°11 

f 
S 
33 

1 

1 

1-X^ 

13 
-T. 

«2 

Ul 

1/c^ 

i/|s!i 

^ =^14/^11 ̂  ^15/^11 ^44 

1 
D 
°44 

1 

1-X^ 

1 

1-X^ 



www.manaraa.com

25 

V\ \-K 
(62) 

\t' = -t' '^^•I.j^i 4 1. jl 

V\ V-v< 

(63) 

(64) 

S and u have been eliminated in favor of v and the following constants 

have been introduced. 

%= S (65) 

— (r / L\-\C) (66) 

S' =. s/C\-v;^ (67) 

N^is the well known electromechanical coupling constant generated by 

Mason ( 11). 

Equations 61-64 are a convenient description of the field inter­

actions that will take place in the strip line transducer. In this 

description, the quasi-static approximation is made by setting ]^ = 0 
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in Equation 64. 

E. Normalized Model of Axis Propagation 

It is extremely convenient to normalize the dependent variables of 

Equations 61-64 so that they have the dimensions of the square root of 

power. The following definitions are necessary. 

ïftft = 4 g/ s' ' 

Ïe'E — iju/ 

—-I 

pAfi — tojçs' ' — Lù / 

(65) 

(69) 

(70) 

(71) 

Oi is the angular frequency when the time dependence is of the form 

exp(+jOit). 

The dependent variables are normalized as below. 

V\i^ = ] 24' 

IE. = Ex/Jlî 

V = v" 

(72) 

(73) 

(74) 
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r =  r / i i ^  
(7>) 

These new dependent variables have the following property. 

Se = •> W'' 
(76) 

(77) 

Assuming e:q)(+jWt) time dependence. Equations 61-64 become the follow­

ing. 

AV/i?. — E 

1 rCnl 

(78) 

(79) 

(80) 

A E x / i ^  —  
(81) 
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F. Static Energetics of the Axis Piezoelectric Interaction 

Mason (H) was the first to point out the significance of the dimen. 

sionless quantity = h^/ c^. The author prefers the following in­

terpretation of . 

The interaction being considered is given in its static one-

dimensional form by Equations 58 and 39» These equations can be in­

verted as below. 

- S  =  s ' Y  - 1 7 ^ G  

The energy that is stored in the media by electrical means is 

c ^ 

/ 

and the energy stored in the media via mechanical means is 

S 

(82) 

\)x = — T -V €' Wx (83) 

(85) 

These energies are not state functions (22) but are dependent on the path 

used to obtain the state D^» S» However, their sum given by 
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\xr — Sx ̂   ̂s 1 

is a state function, here "written in terms of the state T* » E^. 

It is convenient to make the following definitions. 

W ;  =  E v T  

Vf = +^tv\ 

V\/gCan only be injected or extracted into or out of the media via 

electrical means. Likewisecan only be injected into or extracted 

from the media via mechanical means. VJi can be injected or extracted 

electrically or mechanically. ^ is the energy available for con­

version, It is observed that 

(87) 

(88) 

(89) 

cz ^ / VTe WVrv 
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Therefore,^ which is a property of the material, is a measure of 

goodness for the static energy conversion process in a piezoelectric 

material for which it can be defined. 

G. The Power Theorem for Axis Propagation in a 4mm Piezoelectric 

The energy flow in a piezoelectric media is a well understood 

phenomena (23). Kyame (?) derived a statement of energy flow for the 

non-quasi-static case. A power theorem is shown here for the simple 

case cf 4mm axis propagation. It is done for the sake of completeness 

and for the interpretation that would be given to this kind of power 

theorem in light of coupled mode theory (12). 

The statement of energy flow for the traveling wave interaction 

of Equations 78-81 is obtained in the customary manner. Equations 78 

and 79 imply that 

(92) 

where 

f] (93) 

<^A> 

density. 

is properly interpreted as the time average acoustic power 

Equations 80 and 81 imply that 
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4: 0 <9'.) 

where 

= ='ReL>Êx Û!|] (95) 

is the time average electromagnetic power density. 

If Equations 92 and 9k are added it is found that 

+  A < S t V c l i  = 0  ( 9 6 )  

Equation 96 is a statement of conservation of energy. Equations 92, 

94, and 96 together with the form (12) of Equation 78-8I imply that 

energy is being continuously interchanged between the acoustic mode and 

the electromagnetic mode as the two modes propagate in the z direction. 

This type of coupling is called passive mode coupling (12), 

H. Capacitively Coupled Transmission Line 

Two capacitively coupled transmission lines are shown schematically 

in Figure 2,' The equations that describe such a model are given below 

with time dependence having been assumed. 
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KJlSlSU 

kSLSUU kSISISU 

Figure 2. Capacitively coupled transmission line 
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Vl 4- joù (98) 

ÀTjAl =• - Y-L f '^w C\-tV\ (99) 

j A2 ~ joû Î"L (100) 

The following definitions are useful. 

c; = c, 4 Cv-, 

Cz! = + C\^ (1=^) 

2:1 = JWcT 

— \| Lt,/ c( (104) 

v , i % \ =  V i b V x j z T  



www.manaraa.com

34 

1,1̂  = xfiT IxU) 

(106) 

(108) 

p; = cùJCcT 

Pit ~ U) JL-^C-V (110) 

^ ^ C.\l/ C( C[ (1:1) 

The dependent variables V\^ X\^ "V^ ̂  and have 

the dimensions of the square root of power. In addition. 

(112) 

and 

= i il: (113) 
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• Substituting Equations 101-111 into Equation 97-100 implies the 

following normalized form for the capacitively coupled transmission line. 

à I / A Ï  =  

V v  4 ^ V i  

(117) 

The analogy between these equations describing two capacitively 

coupled transmission lines and axis propagation in a 4mm piezoelectric 

is seen by comparing Equations 78-81 to the above. 

In addition it can be seen that R has the same static interpreta­

tion as « If the interaction between the two transmission lines is 

static then the structure of Figure 2 reduces to the capacitor TT net­

work shown in Figure 3* It can be found that the total stored energy 

in this network is as given below. 

Vf = \if> -Wi 
(li8) 
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Figura 3* Static interaction between two capacitively coupled 
tranaidssion lines 
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= \ cl V»"" (119) 

— 3v VT. 
(120) 

vfi = J^xTcT Vi V. (121) 

These energies have the same interpretation as the static piezoelectric 

interaction, only be injected or extracted through port 1. 

R, which is a property of the structtire, is a measure of the ability of 

the structure to swap energy between the lines on a static basis. 

The analogy between 4mm axis propagation in a piezoelectric and two 

capacitively coupled transmission lines is complete, 

I, Exact Solution of Axis Propagation in a 4mm Piezoelectric 

Axis propagation in a 4mm piezoelectric with a judicious nonnali-

zation is given by Equations 78-81, Assuming e"^P ̂ dependence, the 

Likewise for ^ can be injected through port 1 and extracted 

through port 2 or vice-versa, VTj^ is the energy that can be swapped 

between the lines on a static basis. Obviously 

(122) 
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dispersion relation for these equations is easily found to be prescribed 

by the following biquadratic equation. 

(123) 

Equation 123 has the following exact solutions. 

1 
% 

""Pee) (124) 

(125) 

The wave amplitudes are found by straightforward algebraic manipu­

lation. 
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£Aî] = E+ - > 
-I A. 

lis T 

,3A^ 

(126) 

= |£ t^e +£•)?"'" 

- tÊ-e'iP"' T-^if 

J /3CE pÀR 

(127) 

(128) 
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V [i] -  ̂

p/lft 

(129) 

--kfr, 

JpEep^A pAA 

_K^ — p<^ — pA^ 

pAA — pfe 

r= jSEE - (130) 

K -

As mentioned earlier in discussing Kyame's work (7). the non-quasi-

static solution of this interaction predicts a component of the electro­

magnetic wave moving at the acoustic velocity and a component of the 

mechanical wave moving at the electrical velocity. The perturbation 

technique below will clarify the significance of these amplitudes and 

relate them to the quasi-static approximation, 

J. Approximate Solution of Axis Propagation in a 4mm Piezoelectric Media 

To make the above exact solution more meaningful, the exact solutions 

are expanded in a power series 
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(131) 

where 

pfifi ~ W? 

pEE _ \Tf\A 
(132) 

and it is assumed that % 1. The motivation for doing this is the 

fact that for nearly synchronous interactions between two wave systems, 

it is found (12, 24) that the strength of the interaction depends on the 

synchronism and the strength of coupling. This interaction is highly 

asynchronism is the major factor in relating the wave amplitudes. As 

will be seen below, this is a very good approximation and only the first 

term in each expansion need be kept. 

Applying this procedure to the dispersion relation given by 

Equations 124 and 125t it is found that 

asynchronous ( % ̂  10"^ to 10"^) and one might suspect the degree of 

and 
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|3e = (134) 

+ 6(St) t...] 

where \Cy means order of. Obviously it is a good approximation to let 

j3fi ^ + ÔU^) (135) 

and 

jSE ^ p>EE (I~K) i 6(J^) 
(126) 

The constant ̂  is approximated as above by using Equations' 133 and 

134 in Equation I30. It is found that 

Jk = t 6 L ^ ^ ]  (137) 

The exact wave amplitudes of Equations 126-129 are rewritten in terms 

of 
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-V Vi.uû, 
(138) 

M 
Bee 
ï 

4- \ii\jO. 

r j k ^ T # '  

(139) 

f w .  X è # '  

jr 

4 \)»uO« 

(140) 

4 T ^ L  
frl̂  

4" Vi> U)i 

(141) 
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The abbreviation, b.w., stands for the backward waves. 

Then substituting freely from Equations 133-135 implies the follow­

ing results for the wave amplitudes. 

fTJk =z 4 (1"^) 

pejgK = 1 + Ô U"-)) (W) 

&  =  i  +  6 ( s ^ )  

pftfl 

(144) 

(146) 

(147) 

S will be so small that the wave amplitudes are approximated through 

order % as below. 

Ê^li) = Pe-if-' V È-e if" (148) 
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H,w = IS ê -KT-ê»'" 

+EtenP"» am 

f U \  =  J s 5 ê ë > ^ '  4 T e " ' f " '  

+ j w  t T e ' i f "  i « )  

vt!\ = - i - e' i (151) 

These results show that only the magnetic field has a significant 

component moving at the acoustic velocity and only the stress field has 

a significant component moving at the electromagnetic velocity. The 

similar components of the electric field and velocity field are much 

smaller in relation to the above components and can safely be ignored. 

The wave amplitudes as prescribed ty Equations 148-151 are the ones 
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that will be used In future calculations. 

K. Relation of the Approximate Traveling Wave Solutions to the Quasi-

Static Approximation 

The greatest bulk of acoustic work is done using the quasi-static 

approximation. In particular when the interaction region of the trans­

ducer is small with respect to an electrical wavelength, it is a good 

approximation to set the right hand side of Equation 81 to zero. If 

Equations 78-81 are solved with the electric field assumed to be con­

stant, then the exact results are as below. 

::: __ (i)2) 

(153) 

4- \fvci: (154) 
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tv — COVNSAÛ^V^ 
(155) 

If the interaction region is of significant length with respect to 

an electrical wavelength, then the electric field cannot be approximated 

as a constant, A good guess as how the above quasi-static results should 

be modified in such a case would be 

Substitution of Equation I56 into Equations 152-155 gives Equations 149-

151. The more precise approximation procedure of Section J justifies the 

above modification of the quasi-static results. 

L. Power Transfer on the Semi-Infinite Structure 

It is interesting to consider the situation where the media- is ter­

minated at z = 0 in a stress free surface and the boundary conditions are 

such that inj*^ watts/meter^ are injected into the electromagnetic 

mode. It is assumed the media extends to infinity. 

The semi-infinite structure assumption implies that there are no 

backward waves. The stress free assumption at z = 0 implies 
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Substitution of Equation I57 into Equations 148-151 gives the waves on 

this structure as below. 

(158) 

V =L 

(159) 

(160) 

(161) 

The energy flow in this structure is given below. 

< 3. 1  —  s \ V \ ^ I 2  

i 

(162) 

( i t ' V  
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It is seen that energy is periodically swapped between the acoustic 

and electromagnetic modes. The fraction that is transferred is propor­

tional to ̂  and depends on VC . The dependence on is such that the 

larger the larger the fraction of injected power that can be trans­

ferred to the acoustic mode. ^ and its role in the static energy con­

version process have been discussed earlier in Section F. Equations 162 

and 163 imply that the dynamic energy conversion process is also measured 

by but also depends on the asynchronism given by ^ , These results 

are similar to other traveling wave interactions in which it is typically 

found that the stronger the coupling and the higher the degree of syn­

chronism, the more pronounced the interaction between the coupled wave 

systems. It is noted that there is no quasi-static analogue for the 

problem considered here. 

M. Electrically Resonant Transducer 

In this section, a transducer scheme that is electrically resonant 

but not mechani cally resonant is analyzed. However this particular struc­

ture has a similar insertion loss to structures that are mechanically 

resonant. Fabrication tolerances and external matching problems should 

be considerably relaxed over mechanically resonant devices. 

In the preceding sections, uniform, plane wave propagation alorxg 

axes of a kma. piezoelectric material was investigated. The intention is 

to analyze strip line transducers as generally indicated in Figure 1. 

It is thought that the waves represented by the one-dimensional model of 

Section D meet the boundary conditions of the strip line structure in­
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dicated in Figure 1 with the following provisos; 

Xe » W" 

where ^ is the electrical wavelength, 

W »1 

a 

and 

ci » Xft 

where is the acoustic wavelength. It is felt that if the above in­

equalities are met, the assumption of uniform variations in the x, y 

plane will be met. It is intended that the z axis is the direction of 

wave propagation. In order to coincide with the directions of propa­

gation investigated in previous sections, the c axis must be either 

oriented in the z direction or the x direction. The former case will 

be called a c axis transducer and the latter a basal plane transducer. 

For the particular devices of interest, it will be vital that 1 be the 

order of an electrical wavelength. Specific implementations of the 

electrically resonant transducer which will be analyzed below are dis­

cussed in the following sections. The intention here is to outline the 

restrictions (Equations 164-166) for which it is thought the fields 

represented by the previous uniform plane analysis meet the boundary 

(164) 

(165) 

(166) 
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conditions imposed by the strip line structure shown in Figure 1. 

The electrically resonant transducer (E.K.T.) is shown schemati­

cally in Figures 4a and 4b. The dual of the circuit sho'wn in Figure 4 

is one that is clamped at z = + 1^ . Since there is no apparent 

practical application for such a staructure, its analysis is carried out 

in Appendix 1. 

'.without specifying the excitation at z = 0, the boundary conditions 

for the structure shown in Figure 4 are given below. 

= 0 (167) 

Êx(i+^=0 (168) 

— (169) 

T'to-V=T'Co^) (170) 

Applying Equations 16? and l68 to Equations 148-151 implies the following. 

— Ex (o"^) V\V\pEU? t 3:) (171) 
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E^(- L) = 0 E jy = 0 

V(- IJ -^o 

- [E (Ol - E^(O-)] + 

T'(- L) 

z = - L 

Flgur# 4». The «lectrloally resonant transducer with balanced excitation 

M..(01 - H(0') n + 

L.  

T'(- L) 

Ex('+) = 0 

0-*-V(l^) 

Figure 4b. The electrically M sonant transducer with unbalanced 
excitation 
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H =  ±  É %  l o + - ]  cos^elH tz) 

(172) 

V 7" (173) 

-V + 
(174) 

The top sign is to be applied for z <0 and the bottom sign for 0. 

It is useful to define the following variables. 

\ =  i t  4 ^ v  

(175) 

=: + I \|\-Vv ExlD"*") CDS ̂EUj: t g) 
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+ -V 

It is observed that 

because of the boundary condition imposed there. It is seen from 

A. A 
Equations 174 and 176 that t and v are the standard transmission line 

variables. ^ is useful because it is equal to the real stress, T', 

at the outside world, z = t as given by Equation 177* 

From Equation 170 and 176, it can be concluded that 

± - ko1 = -W[hx(0*] -Ixlo") 1 

/ * 
Therefore it can be seen that if the excitation is unbalanced ( = 

both t and v will be continuous at z = 0 and the mechanical 

line will be uncoupled from the electrical line. Therefore unbalanced 

excitation at z = 0 leads to no interaction between the acoustic and 

electromagnetic modes and will not be considered further. 
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Balanced excitation as shown in Figure 4a is considered. 

^ = ̂lO") (179) 

Aw 
Because both v and H are continuous, y  

V\lO ) :=: =V\(o) (180) 

Then 

\\^{S)\ = V\lo^ - >1^ Y lo) (181) 

Using Equations 181 and 178, it is found that 

I J A 

—Jws Vio l  

~ ttlo) E.X(.0^) — Ly (0 ) 

= V\lo^ , ^ V ( 0^ 

ExCo') - èxto-) jrW) - i (o"j 

_ 1 W ̂ 
/ ko') . lAlo*) 

\ W I V UoV V \Ho)  I  v(oX 

(182) 
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Equations I78, 181, and 182 are conveniently represented by the circuit 

model shown in Figure 5» 

Equation 175 gives 

(183) 

The quantities t (0 ?^)/v(0) are related to the quantities T Y 

by the standard transmission line translations which are given below. 

i = 

i 4 

i _ ^ 
(184) 
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- [Ê^(0+) - Ê^(01] + O 

V7T V{0) 

•UUljLSlfijLr 

VFô: 1 

- [V) - t(o")] + V(0) 

Figure 5. Circuit showing relation of variables at z, = 0 for E.R.T. 
with balanced excitation 
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1 + ± Ko-)/v(d) -1 

(185) 

1 - e t k W / v W - i '  

The circuit model of Figure 5 is expanded by using Equations 183-185 

as shown in Figure 6. The model of Figure 6 properly relates the three 

accessible ports in the structure of Figure 4a. The actual behavior of 

A A 
T* and everywhere in the structure of Figure 4a is given by the above 

equations» However the relationship among the three accessible ports is 

described by the model of Figure 6 whose validity is established by the 

above equations. The essential feature of the model in Figure 6 is the 

way the mechanical and electrical modes can be regarded as uncoupled ex­

cept for the transfoimer located at the point of excitation. As pointed 

out earlier, this decoupling occurs because the electric field was forced 

to be zero at 2, = ± 1 ̂ . In essence the E.R.T. structure of Figure 4a 

and as modeled in Figure 6 can be regarded as a balanced electrical source 

in parallel with two series connected stubs and transformer coupled to a 
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+ long 

long 

-v(ij 

A 
T'i 

Figure 6 Model mhowlng behavior of E.R.T. at its accessible parts 
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mechanical transmission line of length 1^ in one direction and Ij^ 

in the other. 

It should be noted that there is no non-trivial quasi-static analogue 

to the structure considered in Figure 4a and modeled in figure 6, The 

quasi-static limit of the E.R.T. would consist of a shorted electric 

field at the point of excitation and hence no coupling to the mechanical 

mode at all. Practical implementations of the E.R.T. are considered in 

the next three sections. 

E.&.T. Located on the End of a Stress Free Bar 

The E.R.T. situated on the end of a stress free bar is shown sche­

matically in Figure 7. The circuit model of this device as deduced from 

the more general model of Section M, Figure 6, is shown in Figure 8, An 

idealization of a physical realization of this structure is shown in 

Figure 9« It is intended that Figure 9 be a sideview with the width of 

the device being w. It is assumed that the bond at z = 1 is perfect. 

This structure would meet the boundary conditions exactly. A possible 

practical implementation of this structure is shown in Figure 10. It is 

thought that the manner in which the electric field is shorted at z = 1 

will not disturb the T.E.M. nature of the fields there significantly. 

The structure being considered here shares the property of typical quasi-

static devices in that its location is fixed at the end of the bar. In 

the next two sections, transducers that can be located arbitrarily on the 

substrate are considered. 

The practical case where the transducer is terminated in its own 
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-O 

A 
H +0 

0+ 
A 
TM) 

O-

T»(0) = 0 

Figure 7. Schematic representation of the E.R.T. on the end of a 
stress free bar 
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long 

0+ + 
A 
E 

X o 

O- T'(l) 

Figure 8. Model showing relation between accessible ports of the &.R.T. 
when located on the end of a stress free bar 
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z = 0 = I 

r y Y. 
////////////TTTTpr 

y i  

% \ SAME 
MECHANICAL 
IMPEDANCE 

PIEZOELECTRIC 
CONDUCTOR-

Figure 9* Physical idealisation of the electrically resonant transducer 
on the end of a stress free bar 
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CONDUCTOR 

PIEZOELECTRIC 
SUBSTRATE 

Y. m 

Figure 10. Possible physical realization on the electrically resonant 
transducer on the end of a stress free bar 
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mechanical impedance as shown in Figure 10 is considered. 

T' (186) 

It is apparent then from the circuit model of Figure 8 that 

= XlAE = -jiî^cô^pEJ! 

When the transducer is terminated in its match impedance, the electrical 

driving point admittance is not dependent on a mechanical resonance. 

Within the transducer region there is only a mechanical wave moving in 

the + z direction and not the - z direction. This remarkable property 

comes about because the electric field is shorted at z = 1 and doesn't 

cause a reflection as it does in quasi-static devices. In addition, it 

is noted that when the stnxcture is in a quarter wave electrical resonance, 

the driving point admittance is real. 

This is a property of the strip line transducer that the quasi-static 

device doesn*t have. At an electrical resonance, the strip line trans­

ducer presents a real admittance and there is no need to tune out a 
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reactance in the external matching circuitry. 

The actual driving point admittance of the structure is given 

below (25), 

When the structure is at a quarter wave electrical resonance. 

4 Nl 

& 

Mo \ 60 

(190) 

As seen in Appendix B, this result is entirely comparable to a similar 

quasi-static device at mechanical resonance. To facilitate matching, it 

is desirable that the quantity be as large as possible. 

This suggests that a ferroelectric material be used as the piezoelectric 

substrate because of the extremely high permittivities that can be found 

in some ferroelectrics (26-28). The parameters that have previously been 

found important for axis propagation in a 4mm piezoelectric are shown 

for the case of barium titanate in Table 2. This data is based on the 

single crystal measurements of Berline ourt and Jaffe (29). Using this 

data in Table 2, it is found that 

(191) 
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Table 2. Pertinent constants for axis propagation in BaTiO^ 

Values from the Propagation in the Propagation along 
one dimensional mode basal plane the c axis 

6020kg/ 6020kg/m3 

s 3.54xlO-12m2/K 12.4x10-1^ m^/U 

e 112 e 
o 

1970 e. 

h -.269xlO^°V/m .122xlol° V/m 

\\ .0254 .322 

s» 3.63X10-̂ 2̂ /̂H I8.3xl0-I^m^/N 

115 6, 2920 e. 

6.78xl0^m/s 3.01xlo3m/s 

2.8xl0^m/s 5.56x10^m/s 

V 2.83xl0^m/s 6.76xl0^m/s 

s .242x10-3 .542x10-3 

.615x10-5 1.74x10-4 

.658x10-4 .94x10-2 

1.^ s/cm 3.32 f^s/cm 
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for propagation along the c axis and 

for propagation in the basal plane. 

Transducers are generally characterized by their insertion loss. It 

is supposed that is the characteristic admittance of the external ex­

citing circuit. The definition 

Vf 

is made. Only the situation at electrical resonance, 1 = X g/4, is con­

sidered. Then 

_ X — 

In considering the case where mechanical energy is converted to electrical, 

it is assumed that 

— —Vo cotpei 
(195) 
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then 

(196) 

Define 

Then 

t» V_i — "î-^SS.^l'ûA ^— OSS 

— -\Dlo(^ ioL\ -  j i8  

— —10 lo  
5' 

N —n 
4S\<Y.  A6 

(198 J 

For a modest aspect ration of w/d = 10 and X* — VSOSL » it is 

found that for a c axis transducer X«V.«  ̂I3î  and 

for a basal plane transducer X.L. ̂  35cjiS* 

0. Arbitrarily Located End Excited E.R.T. 

In the last section, the transducer scheme analyzed was confined to 

the end of the substrate in order to meet the stress free assumption. In 

this section, an E.R.T. is proposed that should be capable of arbitrary 

location on the piezoelectric substrate. A schematic representation of 
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"this "transducer is shown in Figure 11. The model of the port beha-vior 

as deduced from the model of Section M, Figure 6, is shown in Figure 12, 

A possible physical realization of this transducer is shown in Figure 13. 

Here again it is supposed that the manner in which the electric field is 

shorted at z = 1, will not disturb the T.E.K. nature of the fields there. 

The practical case where the transducer is terminated in its own 

match impedance is considered. 

This is entirely similar to the admit"tance calculated in Section Ai 

except that the real part of the admittance is decreased by a factor of 

two. 

The calculation of insertion loss proceeds in the same fashion as in 

Section N and it is found that 

(199) 

(200) 

Then from Figure 12, it can be deduced that 

X.l_. — — \0 
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Figure 11. Schematic representation of the E.R.T. arbitrarily located 
on the piezoelectric substrate with end excitation 
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Figure 12. Model shbwlng irelatlon between acoessible ports of the 
arbitrarily located end excited E.R.T. 
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CONDUCTOR 

PIEZOELECTRIC 
SUBSTRATE 

Figure 13. Possible physical realization of the arbitrarily located 
end excited E.R.T. 
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A 
where is given by Equation 193• It is observed that even if the 

external electrical exciting circuit could be exactly matched to the 

transducer (_ Xo "» ^ there would still be 3dB of loss. 

This is because half of the acoustic power will be launched in the - z 

direction and half in the + z direction and only one direction is con­

sidered useful. Likewise when a mechanical wave is incident upon the 

transducer, some of the power (half if Yq = S\^/2) will be converted 

into electrical energy and some lost into the substrate on the other 

side of the transducer. These facts are taken into account in Equation 

202. 

Using the data given in Table 2 and and assuming w/d = 10 and 

= 1/50 S\. t it is found using Equation 202 that ÏA.» 

for a c axis ^'c^\03 transducer and for a 

basal plane transducer. 

P. Arbitrarily Located E.A.T. with Balanced Excitation 

The transducer scheme discussed here is just the realization of the 

general E.R.T. model discussed in Section M. This transducer is schemati­

cally indicated in Figure 4a and the circuit model is shown in Figure 6. 

The practical case of matched terminations in the acoustic line is con­

sidered. A possible physical realization of this structure is shown in 

Figure 14. It is intended that the exciting line be raetalized on the 

substrate along with the strip line and that it be magnetically coupled 

to the strip line as indicated. The characterization of the coupling 

between the exciting line and the strip line will not be considered here 
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PIEZOELECTRIC 
SUBSTRATE 

CONDUCTOR 

Figure 14. Possible physical realisation of the arbitrarily located 
E.R.T. with balanced excitation 
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and the characterization of the driving point admittance will be done 

as if the strip line were excited as shown in Figure 4a. 

The transducer scheme proposed here can also be arbitrarily lo­

cated on the substrate. The only difference between this scheme and 

the one discussed in Section 0 is that midpoint balanced excitation is 

used here. It is apparent from the circuit model of Figure 6, that 

there is no mechanical resonance in this structure and that either stub 

can be resonated to tune out the reactance presented at the electrical 

port. That is, resonance corresponds to either or 

Considering an electrical source at z = 0 and the acoustic lines 

matched at z = t ÎI+ , the physical situation in the transducer is 

the following; For z 0 there is one mechanical wave moving in the 

+ 2 direction and for z <0 there is one mechanical wave moving in the 

- z direction. Equal amounts of power are delivered to the match loads 

at z = t . Considering a mechanical wave incident on the trans­

ducer from z > 1^ moving in the - z direction, the physical situation 

in the transducer is the following; Part of the - z directed wave is 

transmitted on through the transducer, part is converted to electrical 

energy and extracted through the electrical port, and part is reflected 

back down the line to the port at z = 1^ . If the port at z = - 1_, is 

matched, there is only a mechanical wave moving in the - z direction for 

- 1., < Z < 0 and the reflection in 0 < z < 1̂  can be thought of as 

being caused by the electrical load at z = 0. 
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Equation 202 is to be used in calculating the resonant insertion 

loss of this structure and the same numerical estimates of insertion loss 

for a substrate stated in Section 0 can be applied here. 
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III. EXPERIMENTAL PROGRAM 

A. Introductory Comments 

As pointed out in Chapter II, the practical implementation of the 

strip line transducer depends on being able to use ferroelectric 

crystals. Barium titanate (BaTiO^) was chosen as the experimental 

material because fairly large crystals of this material were available 

and the properties of this material as reported in the literature 

(26, 27, 28, 29, 30, 31) were deemed desirable. BaTiO^ is grown in 

plates with one of the nominal cubic axes (30, 31) perpendicular to 

the plate. If large enough crystals could be consistently obtained, 

BaTiO^ would appear to be a good choice for use as the substrate in 

devices utilizing the proposed strip line transd.ucers. 

Also, as pointed out in Chapter II, if BaTiO^ is to be used as the 

substrate, then the c axis mode of operation is very desirable compared 

to the basal plane mode. In fact the calculations for insertion loss 

when c axis propagation is used can be termed attractive. The diffi­

culty in building a c axis transducer is that it appears that the single 

"a" domain (30, 31) must be formed prior to the metalization of the strip 

line. Difficulties were encountered in carrying this process to com­

pletion. Instead basal plane transducers were constructed because they 

could be metalized and the single "c" domain (30, 31) then formed. 

It would be desirable to form the strip lines on the substrate using 

photo mask techniques (32). The effect of subjecting the BaTiO^ to the 

etchant was unknown and it was decided to directly mask the crystal and 
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then metalize the strip lines. This is a crude technique and it will 

undoubtedly become necessary to find a material that photo mask tech­

niques can be used upon. 

The experiment reported here involves bouncing a very short duration 

pulse off the end of a bar. The bars were carefully cut on a wire saw, 

but no polishing of the ends was attempted. Good B^T^O^ ci-ystals are 

fairly flat, and extensive etching in phosphoric acid above the Curie 

temperature seems to make them very flat (33)« The transducer scheme 

considered in this thesis envisions two or more transducers placed on 

the substrate, and the problem of polishing the ends of the transducer 

in order to observe a bounce would be of no importance. A bounce ex­

periment was performed here because overly large crystals were not avail­

able and this in essence doubled the available delay. 

The experiment reported here excited the basal plane mode in a 

shorted strip line transducer with a short duration (2ns - 10ns) voltage 

pulse. The author feels that the observed acoustical returns are strong 

evidence that the analysis and models of Chapter II are correct. 

B. Transducer Fabrication 

Several different strip line transducers were constructed and tested. 

The intention here is to describe a successful one in terms of available 

crystals and success in fabrication and testing. 

A large, fairly defect-free, single crystal of BaTiO^ was selected. 

The crystal was observed through crossed polarizers and the nominal cubic 

axes in the plate of crystal noted. The crystal was carefully cut on a 
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wire saw. It was cut into a bar with its edges parallel to the nominal 

cubic axes with dimensions 1.14cm x .28cm x .028cm. The bar was cleaned 

in various organic solvents and given a brief etch in phosphoric acid 

heated to 140° C. 

The bar was then mounted on a mask using silicone grease. The 

grease was applied in such a way that it would not be in the path of 

the acoustic beam as generated by the strip line. Aluminum was evapor­

ated onto the bar to form a ground plane on one side and to form on the 

other side a .125cm strip running the length of the bar and roughly 

centered in that face. The thickness of this evaporation was estimated 

to be 3500^* 

The bar was then bonded ground plane down onto another ground plane 

which was part of a jig. The jig accomplishes the coaxial to strip line 

transition. The bond was accomplished with conducting silver paint. 

About 1 cm of copper wire was soldered to a round silver electrode, 

.234cm in diameter. The electrode was bonded by silver paint to one end 

of the strip line. The other end of the wire was attached to the center 

lead of the coaxial cable. The outer shield of the coaxial cable was 

attached to the ground plane. This coax to strip line transition is 

rather crude, but reliable. The transition was accomplished in such a 

short distance with respect to wavelengths of interest that it is thought 

to be valid in the sense of interpreting experimental results with re­

spect to the preceding analysis. Investigation of the transition with 

a time domain reflectometer indicated negligible reflections due to the 

transition. 
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The device was then cooled to -15°C and 200V applied to the strip 

line for an estimated field strength of approximately 7kV/cm. The device 

was slowly warmed to 27°C and the electric field removed. The author has 

found this to be a more reliable way to accomplish single "c" domains 

than the usual technique of heating the crystal above the Curie tempera­

ture. Experiments with removable electrodes indicate a high probability 

that single "c" domains will be obtained in this fashion. The metaliza-

tion on the device being described here prevents one from observing the 

domains through crossed polarizers, but the experimental results dis­

cussed below indicate that a single "c" domain is indeed obtained. 

The electrical short at the end of the strip line was obtained by 

painting the end of the bar with conducting silver paint, 

C. Transducer Testing 

It is thought that the transducer whose fabrication is described 

above is properly modeled by the end excited E.R.T. shown in Figure 12. 

The right hand end of the acoustic line in Figure 12 is shorted (stress 

free surface) and the left hand acoustic line extends a short distance 

to the left and is terminated in a short also. 

Referring to Table 2, it is found that the electrical line has a 

very low wave impedance (approximately 1 SL) and the acoustic line (as 

seen through the transformer) has a very high impedance (approximately 

10^31 )• Elementary considerations show that a voltage spike incident 

on the transducer from a 50 St system will reappear after the acoustic 

delay with approximately 10"^ of its initial value. The transducer 
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of length 1.14cm described in Section B should have a total electrical 

delay of approximately Ins and a total acoustic delay of approximately 

3.4ms based on the data in Table 2. 

The electrical observations were carried out in the following man­

ner, A 50 pulse generator drove the midpoint of a tee. One side of 

the tee was connected to the transducer with about 20cm of ^0 $1. cable. 

The other side of the tee was connected to an amplifier with approximately 

80dB of gain and 8MHz of bandwidth. The center frequency of the ampli­

fier was 30MHz. The output of the amplifier was observed on an oscillo­

scope with 85KHZ of bandwidth. The amplifier had the ability to recover 

quickly when greatly overdriven. That is, the initial voltage pulse did 

not noticeably saturate the amplifier in looking for returns after this 

pulse was finished. 

Figure 15 is an observation of the reflection of a 2ns pulse from 

the beginning of the transducer. The second negative notch is probably 

the reflection from the short at the end of the transducer. The photo­

graph in Figure 15 was made on a sampling oscilloscope without use of the 

amplifier described above. 

Figures 16-19 are photographs of the output of the amplifier as ob­

served on an 85MHz oscilloscope. They were all taken with the amplifier 

having about 80dE of power gain. Figures 16-18 are for a pulse repetition 

frequency of 50kHz and Figure 19 of 20kHz. The initial voltage pulse in 

all four figures had an amplitude of 4v. The vertical scaling in these 

figures is lOOmV/cm and the horizontal scaling is nominally 2)J^s/cm in 

Figures 16-18 and 5 s/cm in Figure 19. The lower trace in all four 
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Figure 15» Reflection of pulse as observed on sampling oscilloscope 
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Figure 16, Signal observed when transducer is replaced by short 
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Figure 17. Acoustic return from transducer when excited by 2ns pulse 
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Figure 18, Acoustic return from transducer when excited by 6ns pulse 
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Figure 19. Acoustic return from transducer when excited by 10ns pulse 
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figures is to nominally indicate the point in time that the voltage 

pulse is initiated. 

In Figure 16 the transducer is replaced by a short. It indicates 

how well the amplifier recovers from an initially large pulse. The in­

put pulse had a duration of 10ns. It is apparent that signal occurring 

more than 1 s after the initial pulse cannot be attributed to amplifier 

saturation. 

figures 17-19 show the return from the transducer for for 2ns, 6ns, 

and 10ns pulses respectively. It is noted that a return can be observed 

for up to 20 s with the 2ns and 6ns pulses and up to 30 s with the 

10ns pulse. Attention is called to the spikes occurring in a regular 

fashion on the right hand side of the trace in Figures 1? and 18. At 

least three of these can be observed. Likewise in Figure 19 beginning 

slightly right of center and going to the left, four regularly spaced 

spikes can be observed. A more careful determination of their spacing 

using a crystal oscillator as the base to calibrate the time scale on 

th e  o s c i l l o s c o p e  i n d i c a t e s  t h a t  t h e s e  s p i k e s  a r e  s e p a r a t e d  b y  3 , 4 s .  

It is also noted that shorting the transducer at the point that 

contact is made to the stripline causes the extensive post 1jV^s signal 

to disappear. Shielding the device with aluminum foil causes no change 

in the observed signal. Varying the pulse repetition frequency from 

20kHz to iMHz has little apparent effect on the signal. Touching the 

surface of the transducer with a camel hair brush changes the post 1 s 

signal slightly. 
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D. Interpreting the Experimental Results 

The basal plane strip line model developed in Chapter II and mod­

eled in Figure 12 assumes the excitement of a uniform T.E.M. wave and a 

longitudinal mechanical wave that are continuously coupled together and 

contained in the region of the strip line. Theoretically this mode has 

infinite bandwidth, but it can be expected that lower frequencies will 

not meet the assumption of uniformity and the actual wave excited could 

be more complicated than the simple mode envisioned above. Also it is 

likely that in attempting to bounce the beam off an end of the bar, the 

upper frequencies will be limited by how well this end is prepared. 

Therefore, it is to be expected that when a broadband signal such as 

a short duration pulse is introduced onto the strip line structure, the 

acoustic return will contain those frequency components of the initial 

pulse that the transducer can handle and the return pulse will be dis­

persed. In addition, the method of observation gives a 8 MHz window 

centered at 30 MHz which introduces dispersion in the observation. 

There can be little doubt that the post 1 )\ s signal shown in 

Figures 17-19 is acoustic in nature. The experimental procedure out­

lined in Section C is fairly convincing evidence that the post IJL^ s 

signal is an acoustic return. 

There is a possibility that the acoustic return observed in Figures 

17-19 is a resonance where the wave motion is perpendicular to the plate 

(a thickness resonance). The author feels this is unlikely for even 

given that the mode of operation here is not the manner in which a thick­

ness mode would be excited, the fact that the return is fairly independent 
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of the pulse repetition frequency would seem to be strong evidence that 

the thickness resonance is not excited. 

The spikes in the acoustic return that are separated by 3.4 s are 

fairly strong evidence that at least in that part of the return the ob­

served signal is indeed the strip line mode mentioned above. The strong 

signal immediately following the input pulse could be understood as 

multiple reflections between the near end of the bar and the point of 

excitation. That is, the model of Figure 12 predicts pulses leaving in 

both directions. The return spikes every 3.4 ̂  s can be understood as 

reflections from the far end of the bar. The hash preceding these spikes 

may be understood as reflections from the near end of the bar which are 

in turn reflected by the point of excitation as predicted by the model 

of Figure 12. This near signal may be understood, then, as a pulse 

bouncing between the near end of the bar and the point of excitation. 

With every bounce, part of its energy is leaked out the transformer or 

down the other side of the bar to the far end. 
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IV. bUmAAY AND CONCLUSIONS 

A microwave frequency bulk wave transducer scheme has been suggested 

in this thesis. Basically the scheme involves construction of strip 

lines on piezoelectric crystals of the correct symmetry and orientation. 

The specific case investigated was propagation in the basal plane or along 

the c axis for crystals of 4inm symmetry. It was shown that the modes ex­

cited could be regarded as two capacitively coupled transmission lines 

where one line corresponds to the electromagnetic wave and the other the 

acoustic wave. A power series approximation technique was developed to 

analyze the class of problems that arise for this structure. It was 

shown that shorting the electric field on one or both ends of the line 

caused acoustic waves moving in only one direction in the transducer 

region. This kind of transducer is not mechanically resonant. It is 

felt that this property should greatly facilitate mechanical fabrication 

for use at higher frequencies. It is also shown that when the ends of 

the electrical line are shorted, the acoustic and electric lines may be 

regarded as uncoupled except for a transformer at the point of excita­

tion. It is also indicated that these transducers may be located at will 

on the piezoelectric substrate. Estimations of insertion loss based on 

published data for barium titanate are made. It is found that a c axis 

transducer would be quite attractive. 

A transducer was constructed using barium titrate as the piezo­

electric material. This transducer was a strip line formed on a bar 

1.14 cm long and shorted on one end. The crystal was poled so that 
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propagation took place in the basal plane. The transducer was excited 

by a voltage pulse varying in duration from 2ns to 10ns. An acoustic 

return lasting up to 30s could be clearly observed. It is felt that 

results of this experiment bear out many aspects of the analysis. In 

particular the decoupled transmission line model mentioned above yielded 

a consistent interpretation of the experimental data. To the author's 

knowledge, no transducer has ever been constructed that could handle 

such short duration pulses. 

The capability of being able to arbitrarily locate the transducer on 

the substrate depends upon being able to short the electric field over 

the side of the crystal. This concept was not experimentally verified 

primarily because the crystals at the autho2% disposal were not long 

enough. 
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VII. APPENDIX A 

The dual of the electrically resonant transducer analyzed in 

Chapter II is analyzed here. This structure which will be termed a 

mechanically resonant transducer (because it will be shown to have no 

electrical resonance) is indicated schematically in Figure 20. The 

mechanically resonant transducer (M.R.T. ) has no apparent practical 

application but the phenomena of the uncoupling of the acoustic and 

electric modes as indicated in Chapter II is so intellectually re­

markable that it was thought to be worthwhile to include another ex­

ample of it here. 

The boundary conditions to be applied as indicated in Figure 20 

are given below. 

Vl-l) = V(i+  ̂ =0 (203) 

È x W =  

It is useful to apply the variables ̂  and h (see Equations 175 and 176) 

again and for this structure. 

because it is clamped at "2: ~ i ÎI4- • 
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Equation 203 implies (using Equations 148-151) 

S\V\^ï\5i:; 

A £-0S[3rv( (208) 

Equation 204 implies 

(209) 

Equation 205 implies 

= ' T Xo^) - t'(.D) 

If the mechanical source at z = 0 were balanced, VlO")" V (.Cr^^ , 

then — \,LP ̂  and the two lines would be completely un­

coupled. Therefore it is necessary to apply unbalanced excitation as 

indicated in Figure 20. Therefore 

%-) = t ID-̂ ) (211) 

and 
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Of course 

and 

It is found that 

t ' l o l  ^  

Vlc+I-W (^lo1/ê,lo)) V t-VvUVExl")) 

^ 1 

The ratios V\lo W ̂%lo^ and — V\l.O+)y/ H*(o^) are re­

lated to Hg^C-iJ)/£|((.-L^ and — Mv^[îi) / by 

the well known transmission line translations implied by Equations 213, 

214 and 206. 

Equations 207-209 and 212-215 imply that the three accessible ports 

of the M.R.T. can be understood by the circuit model of Figure 21. The 

uncoupling of the modes except for the transformer at z = 0 is again 

observed. 
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Figure 21. Model showing behavior of h.R.T. at its accessible ^orts 
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VIII. APPENDIX B 

A quasi-static transducer using the one-dimensional model of 

Chapter II, Section D is considered. This is a standard calculation 

and is reviewed here in order that the results can be compared to the 

E.R.T. of Chapter II. 

The problem to be considered is schematically indicated in Figure 

22. It is assumed that and that Equations 152-155 using 

the quasi-static approximation can be employed. The boundary conditions 

for the structure of Figure 22 are as below, 

= 0  

-  R \ V  l o )  

Substitution of Equations 218-220 into Equations 152-155 readily yields 

the following. 

lo] = i ^ j bfl (219) 

l^\ -V Ri.") ( ̂COS ^xjbcDSfe) 

(220) 

(216) 

(217) 

(218) 
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Figure 22. Schematic representation of a quasi-static transducer 
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W S\A ̂  -V lR\t COS^0- (221) 

^ ̂  ^ (222) 

Consider the practical case where 

^\ — 0 (223) 

L = 1 (224) 

Then 

C\(\i{k=o z:: <î\<ll\--U)st)y' (225) 

= S,\^S'\A9["2-C0Sbli (226) 

Resonance corresponds to | and 
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Oik = ̂ 

(227) 

\)A — ^ 
(228) 

It is apparent by comparing Equation 22? to Equation 165t that at 

mechanical resonance is only four times greater than for the E.R.T. 

located on the end of stress free bar. This is why they were said to be 

comparable. Of course the E.R.T. is not mechanically resonant. 

The situation somewhat analogous to the arbitrarily located E.R.T. 

is to let 1. • Then 

(239) 

Resonance corresponds to and 
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a 
(211) 

r\ 

^T,- \ 

5l = \{\ï\.l'd. 

~ 0 
(232) 

Comparing Equation 231 to Equation 178, it is seen that this conductance 

is twice as big as the arbitrarily located E.fi.T. at electrical reso­

nance. 
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